Copyright 2005 by the Society of Actuaries and the Casualty Actuarial Society
Some of the questions in this study note are taken from past SOA/CAS examinations.
The following model solutions are presented for educational purposes. Alternate methods of solution are, of course, acceptable.

1. Solution: C

Given the same principal invested for the same period of time yields the same accumulated value, the two measures of interest \(i^{(2)}\) and \(\delta\) must be equivalent, which means:
\[
(1 + \frac{i^{(2)}}{2})^2 = e^\delta
\]
over one interest measurement period (a year in this case).

Thus,
\[
(1 + \frac{.04}{2})^2 = e^\delta \quad \text{or} \quad (1 + .02)^2 = e^\delta \quad \text{and} \quad \delta = \ln(1.02)^2 = 2 \ln(1.02) = .0396 \quad \text{or} \quad 3.96%.
\]

2. Solution: E

Accumulated value end of 40 years =
\[
100 \left[(1+i)^4 + (1+i)^8 + \ldots + (1+i)^{40} \right] = 100 \left(1 - (1+i)^{40} \right) \left(\frac{1 - (1+i)^{20}}{1 - (1+i)^4} \right)
\]
("Sum of finite geometric progression =
\[
1^{st} \text{ term times } [1 - (\text{common ratio}) \text{ raised to the number of terms}] \text{ divided by } [1 - \text{common ratio}]
\]
and accumulated value end of 20 years =
\[
100 \left[(1+i)^4 + (1+i)^8 + \ldots + (1+i)^{20} \right] = 100 \left(1 - (1+i)^{20} \right) \left(\frac{1 - (1+i)^{10}}{1 - (1+i)^4} \right)
\]
But accumulated value end of 40 years = 5 times accumulated value end of 20 years
Thus,
\[
100 \left(1 - (1+i)^{40} \right) \left(\frac{1 - (1+i)^{20}}{1 - (1+i)^4} \right) = 5 \left(100 \left(1 - (1+i)^{20} \right) \left(\frac{1 - (1+i)^{10}}{1 - (1+i)^4} \right) \right)
\]
Or, for \(i > 0\),
\[
1 - (1+i)^{40} = 5 \left(1 - (1+i)^{20} \right) \quad \text{or} \quad 1 - (1+i)^{40} = 5 \left(1 - (1+i)^{20} \right) = 5
\]
But \(x^2 - y^2 = [x+y][x-y]\), so \(1 - ((1+i)^{40})/[(1+i)^{20}] = [1 + ((1+i)^{20})]\). Thus, \(1 + ((1+i)^{20}) = 5 \quad \text{or} \quad (1+i)^{20} = 4\).

So \(X = \text{Accumulated value at end of 40 years} = 100 (1+i)^4 [1 - ((1+i)^{40})/[(1+i)^4]]/[(1 - (1+i)^4)]\)
\[
= 100 (4^{1/5}) [1 - (4^{1/5})^10]/[1 - 4^{1/5}] = 6194.72
\]
Alternate solution using annuity symbols: End of year 40, accumulated value = \(100(s_{40}/a_{\frac{4}{4}})\), and end of year 20 accumulated value = \(100(s_{20}/a_{\frac{4}{4}})\). Given the ratio of the values equals 5, then
\[
5 = \left(s_{40}/s_{20} \right) = \left((1+i)^{-40} - 1 \right) / \left((1+i)^{-20} - 1 \right) = [(1 + i)^{-20} + 1]. \quad \text{Thus,} \quad (1+i)^{-20} = 4 \quad \text{and the accumulated value at the end of 40 years is} \quad 100(s_{40}/a_{\frac{4}{4}}) = 100((1+i)^{-40} - 1)/\left[1 - (1+i)^{-4} \right] = 100(16 - 1)/[1 - 4^{-1/5}] = 6194.72
\]

11/03/04
Note: if $i = 0$ the conditions of the question are not satisfied because then the accumulated value at the end of 40 years $= 40 \times (100) = 4000$, and the accumulated value at the end of 20 years $= 20 \times (100) = 2000$ and thus accumulated value at the end of 40 years is not 5 times the accumulated value at the end of 20 years.
3. Solution: C

Eric’s interest (compound interest), last 6 months of the 8th year:

\[
100 \left(1 + \frac{i}{2}\right)^{15} \left(\frac{i}{2}\right)
\]

Mike’s interest (simple interest), last 6 months of the 8th year:

\[
200 \left(\frac{i}{2}\right)\]. Thus,

\[
100 \left(1 + \frac{i}{2}\right)^{15} \left(\frac{i}{2}\right) = 200 \left(\frac{i}{2}\right)
\]

or \((1 + \frac{i}{2})^{15} = 2\), which means \(i/2 = .047294\) or

\[i = .094588 = 9.46\%
\]

4. Solution: A

The payment using the amortization method is 1627.45.

The periodic interest is .10(10000) = 1000. Thus, deposits into the sinking fund are 1627.45 - 1000 = 627.45

Then, the amount in sinking fund at end of 10 years is 627.45 \(\sum_{t=1}^{10} t\).

Using BA II Plus calculator keystrokes: 2nd FV (to clear registers) 10 N, 14 I/Y, 627.45 PMT, CPT FV +/- - 10000 = yields 2133.18 (Using BA 35 Solar keystrokes are AC/ON (to clear registers) 10 N 14 %i 627.45 PMT CPT FV +/- – 10000 =)

5. Solution: E

Key formulas for estimating dollar-weighted rate of return:

Fund January 1 + deposits during year – withdrawals during year + interest = Fund December 31.

Estimate of dollar-weighted rate of return = amount of interest divided by the weighted average amount of fund exposed to earning interest

total deposits = 120

total withdrawals = 145

Investment income = 60 + 145 – 120 – 75 = 10

Rate of return =

\[
\frac{10}{75 + \left(\frac{1}{12} + \cdots + \frac{11}{12}\right) \cdot 10 - \frac{10}{12} - \frac{6}{12} - \frac{2.5}{12} - \frac{80}{12} - \frac{2}{12} - \frac{35}{12}}
\]

= 10/90.833 = 11%

11/03/04
6. Solution: C

Cost of the perpetuity = \(v \cdot (Ia)_\infty + \frac{n \cdot v^{n+1}}{i} \)

\[
= v \cdot \left(\frac{\ddot{a}_n - n v^n}{i} \right) + \frac{n \cdot v^{n+1}}{i} \\
= \frac{a_n}{i} - \frac{n v^{n+1}}{i} + \frac{n v^{n+1}}{i} \\
= \frac{a_n}{i}
\]

Given \(i = 10.5\% \),

\[
\frac{a_n}{i} = \frac{a_n}{0.105} = 77.10 \Rightarrow a_n = 8.0955, \text{ at } 10.5\%
\]

\(\therefore n = 19 \)

Tips:

Helpful analysis tools for varying annuities: draw picture, identify “layers” of level payments, and add values of level layers.

In this question, first layer gives a value of \(1/i \) (=PV of level perpetuity of 1 = sum of an infinite geometric progression with common ratio \(v \), which reduces to \(1/i \)) at 1, or \(v (1/i) \) at 0

2\(^{nd} \) layer gives a value of \(1/i \) at 2, or \(v^2 (1/i) \) at 0

\(\ldots \ldots \)

n\(^{th} \) layer gives a value of \(1/i \) at \(n \), or \(v^n (1/i) \) at 0

Thus 77.1 = PV = (1/i) (\(v + v^2 + \ldots \) \(v^n \)) = (1/1.105) \(a_{n;105} \)

\(n \) can be easily solved for using BA II Plus or BA 35 Solar calculator
7. Solution: C

\[6\left(D_s s_{\text{I}0.09} + s_{\text{I}0.09}\right) + 100\left(15.19293\right) \]

\[= 565.38 + 1519.29 \]

\[= 2084.67 \]

Helpful general result for obtaining PV or Accumulated Value (AV) of arithmetically varying sequence of payments with interest conversion period (ICP) equal to payment period (PP):

Given: Initial payment \(P \) at end of 1st PP; increase per PP = \(Q \) (could be negative); number of payments = \(n \); effective rate per PP = \(i \) (in decimal form). Then

\[PV = P a_{\frac{n}{i}} + Q \left((a_{\frac{n}{i}} - n v^n)/i\right) \text{ if first payment is at beginning of first PP, just multiply this result by (1+i)} \]

To efficiently use special calculator keys, simplify to:

\[(P + Q/i) a_{\frac{n}{i}} - n Q v^n/ i = (P + Q/i) a_{\frac{n}{i}} - n (Q/i) v^n. \]

Then for BA II Plus: select 2nd FV, enter value of \(n \) select \(N \), enter value of 100i select \(I/Y \), enter value of \((P+(Q/i))\) select \(PMT \), enter value of \((–n (Q/i))\) select FV, CPT PV +/

For accumulated value: select 2nd FV, enter value of \(n \) select \(N \), enter value of 100i select \(I/Y \), enter value of \((P+(Q/i))\), select \(PMT \), CPT FV select +/- select – enter value of \((n (Q/i))\) =

For this question: Initial payment into Fund Y is 160, increase per PP = - 6

BA II Plus: 2nd FV, 10 N, 9 i/Y, \((160 – (6/.09)) PMT, CPT FV +/- + (60/.09) = yields 2084.67344

(For BA 35 Solar: AC/ON, 10 N, 9 %i, \((6/.09 = +/- + 160 =) PMT, CPT FV +/- STO, 60/.09 + RCL (MEM) =)

8. Solution: D

\[P = 1000(1.095)(1.095)(1.096) = 1314.13 \]

\[Q = 1000(1.0835)(1.086)(1.0885) = 1280.82 \]

\[R = 1000(1.095)(1.10)(1.10) = 1324.95 \]

Thus, \(R > P > Q \).
EXAM 2/FM SAMPLE QUESTIONS SOLUTIONS

9. Solution: D
For the first 10 years, each payment equals 150% of interest due. The lender charges 10%, therefore 5% of the principal outstanding will be used to reduce the principal.

At the end of 10 years, the amount outstanding is $1000(1 - 0.05)^{10} = 598.74$

Thus, the equation of value for the last 10 years using a comparison date of the end of year 10 is

$598.74 = X \times \frac{a_{10\text{th}}^9}{a_{10\text{th}}^9}$. So $X = \frac{598.74}{a_{10\text{th}}^9} = 97.4417$

Alternatively, derive answer from basic principles rather than intuition.

Equation of value at time 0:

$1000 = 1.5 (1000 (v + .95 v^2 + .95^2 v^3 + ……+.95^9 v^{10}) + X v^{10} a_{10\text{th}}^9)$.

Thus $X = [1000 - .1\{1.5 (1000 (v + .95 v^2 + .95^2 v^3 + ……+.95^9 v^{10})) + X v^{10} a_{10\text{th}}^9\}] / (v^{10} a_{10\text{th}}^9)$

$= [1000 - [150 v (1 - (.95 v)^{10})/(1-.95 v)] / (v^{10} a_{10\text{th}}^9) = 97.44$

10. Solution: B

$i = 6\%$

$BV_v = 10,000 v^3 + 800 a_{4,0.06}^9 = 7920.94 + 2772.08 = 10,693$

$I_v = i \times BV_v = 0.06 \times 10,693 = 641.58$

11. Solution: A

Value of initial perpetuity immediately after the 5th payment (or any other time) = $100 (1/i) = 100/0.08 = 1250$.

Exchange for 25-year annuity-immediate paying X at the end of the first year, with each subsequent payment increasing by 8%, implies

1250 (value of the perpetuity) must =

$X (v + 1.08 v^2 + 1.08^2 v^3 + …..1.08^{24} v^{25})$ (value of 25-year annuity-immediate)

$= X (1.08^{-1} + 1.08 (1.08)^{-2} + 1.08^2 (1.08)^{-3} + 1.08^{24} (1.08)^{25})$

(because the annual effective rate of interest is 8%)

$= X (1.08^{-1} +1.08^{-1} +…..1.08^{-1}) = X [25(1.08^{-1})]$

So, 1250 (1.08) = 25 X or $X = 54$
12. Solution: C

Equation of value at end of 30 years:

\[10\left(1 - \frac{d}{4}\right)^{40}(1.03)^{40} + 20(1.03)^{30} = 100\]

\[10\left(1 - \frac{d}{4}\right)^{40} = 15.77\]

\[1 - \frac{d}{4} = 0.98867052\]

\[\therefore d = 0.0453\]

13. Solution: E

\[\int \frac{t^2}{100} dt = \frac{t^3}{300}\]

So accumulated value at time 3 of deposit of 100 at time 0 is:

\[100e^{\frac{t^2}{300}}|_3^3 = 109.41743\]

The amount of interest earned from time 3 to time 6 equals the accumulated value at time 6 minus the accumulated value at time 3. Thus

\[(109.41743 + X) e^{\frac{t^2}{300}}|_3^6 -(109.41743 + X) = X\]

\[(109.41743 + X)(1.8776106) - 109.41743 - X = X\]

\[96.025894 = 0.122394 X\]

\[X = 784.59\]

14. Solution: A

167.50 = Present value = 10a_{\frac{59.2}{2}} + 10v_{\frac{5}{9.2}} \sum_{r=1}^{\infty} \left[\frac{(1+k)}{1.092}\right]^r

= 38.70 + 10v_{\frac{5}{9.2}} \frac{1+k}{1.092} \left(\frac{1}{1-\frac{1+k}{1.092}}\right) because the summation is an infinite geometric progression, which simplifies to (1/(1-common ratio)) as long as the absolute value of the common ratio is less than 1 (i.e. in this case common ratio is (1+k)/1.092 and so k must be less than .092)

So 167.50 = 38.70 + \frac{(6.44)(1+k)}{0.092-k} or 128.80 = \frac{(6.44)(1+k)}{0.092-k} or 20 = (1+k)/(0.092-k)

and thus 0.84 = 21 k or k = 0.04. Answer is 4.0.
15. Solution: B
 Option 1: \(2000 = Pa_{10\%,0.087} \)
 \(P = 299 \Rightarrow \) Total payments = 2990
 Option 2: Interest needs to be 990
 \(990 = i \left[2000 + 1800 + 1600 + \cdots + 200 \right] \)
 \(= i \left[11,000 \right] \)
 \(i = 0.09 \)

 Tip:
 For an arithmetic progression, the sum equals the average of the first and last terms times the number of terms. Thus in this case, \(2000 + 1800 + 1600 + \cdots + 200 = (1/2) (2000 + 200) 10 = 11000 \). Of course, with only 10 terms, it’s fairly quick to just add them on the calculator!

16. Solution: B
 The point of this question is to test whether a student can determine the outstanding balance of a loan when the payments are not level.

 Monthly payment at time \(t = 1000(0.98)^{t-1} \)

 Since the actual amount of the loan is not given, the outstanding balance must be calculated prospectively,
 \(OB_{40} = \text{present value of payments at time 41 to time 60} \)
 \(= 1000(0.98)^{40}(1.0075)^{-1} + 1000(0.98)^{41}(1.0075)^{-2} + \cdots + 1000(0.98)^{59}(1.0075)^{-20} \)

 This is the sum of a finite geometric series, with
 first term, \(a = 1000(0.98)^{40}(1.0075)^{-1} \)
 common ratio, \(r = (0.98)(1.0075)^{-1} \)
 number of terms, \(n = 20 \)

 Thus, the sum
 \(= a \left(1 - r^n \right)/(1 - r) \)
 \(= 1000(0.98)^{40}(1.0075)^{-1} \left[1 - (0.98/1.0075)^{20} \right]/\left[1 - (0.98/1.0075)\right] \)
 \(= 6889.11 \)

17. Solution: C
The payments can be separated into two “layers” of 98 and the equation of value at 3n is

\[98 \cdot S_{3n} + 98 \cdot S_{2n} = 8000 \]

\[\frac{(1+i)^{3n} - 1}{i} + \frac{(1+i)^{2n} - 1}{i} = 81.63 \]

\[(1+i)^n = 2 \]

\[\frac{8 - 1}{i} + \frac{4 - 1}{i} = 81.63 \]

\[\frac{10}{i} = 81.63 \]

\[i = 12.25\% \]

18. Solution: B
Convert 9% convertible quarterly to an effective rate per month, the payment period. That is, solve for j such that \((1 + j)^3 = (1 + \frac{.09}{4})\) or \(j = .00744\) or .744%.

Then

\[2(1a_{0.00744}) = 2[\text{a}_{0.00744} - 60v^{60}] = 2729.7 \]

Alternatively, use result listed in solution to question 7 above with \(P = Q = 2, i = 0.00744\) and \(n = 60\).

Then \((P + Q/i) = (2 + 2/.00744) = 270.8172043\) and \(-n Q/i = -16129.03226\).

Using BA II Plus calculator: select 2nd FV, enter 60 select N, enter .744 select I/Y, enter 270.8172043 select PMT, enter -16129.03266 select FV, CPT PV +/- yields 2729.68

19. Solution: C

Key formulas for estimating dollar-weighted rate of return:

- Fund January 1 + deposits during year – withdrawals during year + interest = Fund December 31.
- Estimate of dollar–weighted rate of return = amount of interest divided by the weighted average amount of fund exposed to earning interest

Then for Account K, dollar-weighted return:

Amount of interest \(I = 125 - 100 - 2x + x = 25 - x \)

\[
\frac{25-x}{100-x\left(\frac{1}{2}\right)+2x\left(\frac{1}{4}\right)} = \frac{(25 - x)}{100}; \text{ or } (1 + i)^K = \frac{(125 - x)}{100}
\]

Key concepts for time-weighted rate of return:

- Divide the time period into subintervals for each time there is a deposit or withdrawal
- For each subinterval, calculate the ratio of the amount in the fund at the end of the subinterval (before the deposit or withdrawal at the end of the subinterval) to the amount in the fund at the beginning of the subinterval (after the deposit or withdrawal)
- Multiply the ratios together to cover the desired time period

Then for Account L time-weighted return:

\[
(1 + i) = \frac{125}{100} \cdot \frac{105.8}{(125 - x)} = \frac{132.25}{(125 - x)}
\]

But \((1 + i) = (1 + i)^K\). So \((125 - x)/100\) or \((125 - x)^2 = 13,225\)

\[
\therefore x = 10 \text{ and } i = \frac{(25 - x)}{100} = 15\%
\]

20. Solution: A

Equate present values:

\[100 + 200 \cdot v^n + 300 \cdot v^{2n} = 600 \cdot v^{10}\]

\[v^n = .76\]

\[100 + 152 + 173.28 = 425.28. \text{ Thus, } v^{10} = \frac{425.28}{600} = 0.7088 \Rightarrow i = 3.5\%\]

21. Solution: A

Use equation of value at end of 10 years:

\[
(1+i)^{10-n} = e^{\int_0^{10} \frac{1}{8+n} dt} = e^{\frac{\ln(8+n)}{8+n}} = \frac{18}{(8+n)}
\]

\[
\therefore 20,000 = \int_0^{10} (8k + t \cdot k) \cdot (1+i)^{10-t} dt = \int_0^{10} k \cdot (8 + t) \cdot \frac{18}{8+t} dt
\]

\[= 18k \cdot \int_0^{10} = 180k \Rightarrow k = \frac{20,000}{180} = 111\]

11/03/04
22. Solution: D

Price for any bond is the present value at the yield rate of the coupons plus the present value at the yield rate of the redemption value. Given \(r = \) semi-annual coupon rate and \(i = \) the semi-annual yield rate. Let \(C = \) redemption value.

Then Price for bond \(X = P_X = 1000 \frac{r}{i} \frac{1}{2} + C \frac{v^{2n}}{i} \) (using a semi-annual yield rate throughout)

\[
= 1000 \frac{r}{i} (1 - v^{2n}) + 381.50 \text{ because } a_{\frac{r}{i} \frac{1}{2}} = \frac{1-v^{2n}}{i} \text{ and the present value of the redemption value, } C v^{2n} \text{, is given as 381.50.}
\]

We are also given \(\frac{r}{i} = 1.03125 \) so \(1000 \frac{r}{i} = 1031.25 \). Thus, \(P_X = 1031.25 (1 - v^{2n}) + 381.50 \).

Now only need \(v^{2n} \). Given \(v^n = 0.5889 \), \(v^{2n} = (0.5889)^2 \).

Thus \(P_X = 1031.25 (1 - (0.5889)^2) + 381.50 = 1055.10 \)

23. Solution: D

Equate net present values:

\[
-4000 + 2000v + 4000v^2 = 2000 + 4000v - xv^2
\]

\[
\left(\frac{4000 + x}{1.21} \right) = 6000 + \frac{2000}{1.1}
\]

\[x = 5460 \]

24. Solution: E

For the amortization method, payment \(P \) is determined by \(20000 = X a_{\frac{r}{i} \frac{1}{20}} \), which yields (using calculator) \(X = 1815.13 \).

For the sinking fund method, interest is .08 (2000) = 1600 and total payment is given as \(X \), the same as for the amortization method. Thus the sinking fund deposit = \(X - 1600 = 1815.13 - 1600 = 215.13 \).

The sinking fund, at rate \(j \), must accumulate to 20000 in 20 years. Thus, \(215.13 s_{\frac{215.13}{j} \frac{1}{20}} = 20000 \). which yields (using calculator) \(j = 14.18 \).
25. Solution: D
The present value of the perpetuity = \(X/i \). Thus, the given information yields:

\[
B = X \cdot a_{\infty} = 0.4 \cdot \frac{X}{i}
\]

\[
C = v^{n} \cdot Xa_{\infty}
\]

\[
J = v^{2n} \cdot \frac{X}{i}
\]

\[
a_{\infty} = \frac{0.4}{i} \Rightarrow v^{n} = 0.6
\]

\[
J = 0.36 \cdot \frac{X}{i}
\]

That is, Jeff's share is 36% of the perpetuity's present value.

26. Solution: D
The given information yields the following amounts of interest paid:

\[
Seth = 5000 \left(\left(1 + \frac{0.12}{2}\right)^{10} - 1\right) = 8954.24 - 5000 = 3954.24
\]

Janice = 5000 \((0.06)(10)\) = 3000.00

Lori = \(P(10) - 5000 = 1793.40 \) where \(P = \frac{5000}{a_{10}{\%}} = 679.35 \)

The sum is 8747.64.

27. Solution: E
\(X = \) Bruce's interest is \(i \) times the accumulated value at the end of 10 years = \(i \cdot 100 (1+i)^{10} \).

\(X = \) Robbie's interest is \(i \) times the accumulated value at the end of 16 years = \(i \cdot 50 (1+i)^{16} \)

Because both amounts equal \(X \), taking the ratio yields: \(X/X = 2 \cdot v^6 \) or \(v^6 = 1/2 \).

Thus, \((1+i)^6 = 2 \) and \(i = 2^{1/6} - 1 = .122462 \). So \(X = .122462 [100 (1.122462)^{10}] = 38.88 \).

28. Solution: D
Year \((t + 1) \) principal repaid = \(v^{t-t} \)

Year \(t \) interest repaid = \(i \cdot a_{t-t} = 1 - v^{n-t+1} \)

Total = \(1 - v^{n-t+1} + v^{n-t} = 1 - v^{n-t} (v - 1) = 1 - v^{n-t} (- (1 - v)) = 1 + v^{n-t} (d) \)

29. Solution: B

32 is given as PV of perpetuity paying 10 at end of each 3-year period, with first payment at the end of 3 years. Thus, $32 = 10 \left(v^3 + v^6 + \ldots \right) = 10 \, v^3 \left(\frac{1}{1-v^3} \right)$ (infinite geometric progression), and $v^3 = 32/42$ or $(1+i)^3 = 42/32$. Thus, $i = .094879785$.

X is given as the PV, at the same interest rate, of a perpetuity paying 1 at the end of each 4 months, with the first payment at the end of 4 months. Thus, $X = 1 \left(v^{1/3} + v^{2/3} + \ldots \right) = v^{1/3} \left(\frac{1}{1-v^{1/3}} \right) = 32.6$

30. Solution: D

The present value of the liability at 5% is $822,702.48 \ (\frac{1,000,000}{(1.05^4)})$.

The future value of the bond, including coupons reinvested at 5%, is $1,000,000$.

If interest rates drop by $\frac{1}{2}$%, the coupons will be reinvested at an interest rate 4.5%. Annual coupon payments $= 822,703 \times .05 = 41,135$. Accumulated value at 12/31/2007 will be

$41,135 + [41,135 \times (1.045)] + [41,135 \times (1.045^2)] + [41,135 \times (1.045^3)] + 822,703 = 998,687$. The amount of the liability payment at 12/31/2007 is $1,000,000$, so the shortfall $= 998,687 - 1,000,000 = -1,313$ (loss)

If interest rates increase, the coupons could be reinvested at an interest rate of 5.5%, leading to an accumulation of more than the $1,000,000 needed to fund the liability. Accumulated value at 12/31/2007 will be $41,135 + [41,135 \times (1.055)] + [41,135 \times (1.055^2)] + [41,135 \times (1.055^3)] + 822,703 = 1,001,323$. The amount of the liability is $1,000,000$, so the surplus or profit $= 1,001,323 - 1,000,000 = +1,323$ profit.

31. Solution: D.

Present value $= 5000 \left(1.07v + 1.07^2v^2 + 1.07^3v^3 + \ldots \right) + 1.07^{19}v^{19} + 1.07^{20}v^{20})$

$= 5000 \times 1.07 \times \frac{1-(1.07)^{20}}{1-(1.07v)}$

simplifying to: $5,000 \times 1.07 \frac{1-(1.07/1.05)^{20}}{(.05) - (.07)} = 122,634$
32. Solution: C.
NPV = -100000 + (1.05)^{-4}(60000(1.04)^1 + 60000) = -100000 + (1.05)^{-4}(122400) = 698.72

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash Flow</td>
<td>Initial Investment</td>
<td>-100,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Investment Returns</td>
<td>60,000</td>
<td>60,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reinvestment Returns</td>
<td>60,000*.04 = 2400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total amount to be discounted</td>
<td>-100,000</td>
<td>0</td>
<td>0</td>
<td>60000+62400 =122400</td>
</tr>
</tbody>
</table>

Discount Factor 1/(1.05)^4 = .822702

698.72 -100,000 0 0 100,698.72

33. Solution: B.
Using spot rates, the value of the bond is:
60/(1.07) + 60/((1.08)^2) + 1060/((1.09)^3) = 926.03

34. Solution: E.
Using spot rates, the value of the bond is:
60/(1.07) + 60/((1.08)^2) + 1060/((1.09)^3) = 926.03.

Thus, the annual effective yield rate, i, for the bond is such that 926.03 = 60a_{3|} + 1000v^3 at i. This can be easily calculated using one of the calculators allowed on the actuarial exam. For example, using the BA II PLUS the keystrokes are: 3 N, 926.03 PV, 60 +/- PMT, 1000 +/- FV, CPT I/Y = and the result is 8.9% (rounded to one decimal place).
35. Solution: C.

$$\sum_{t=1}^{n} tv^t R_t$$

Duration is defined as$$\frac{\sum_{t=1}^{n} tv^t R_t}{\sum_{t=1}^{n} v^t R_t}$$, where v is calculated at 8% in this problem.

(Note: There is a minor but important error on page 228 of the second edition of Broverman’s text. The reference “The quantity in brackets in Equation (4.11) is called the duration of the investment or cash flow” is not correct because of the minus sign in the brackets. There is an errata list for the second edition. Check www.actexmadriver.com if you do not have a copy).

The current price of the bond is$$\sum_{t=1}^{n} v^t R_t$$, the denominator of the duration expression, and is given as 100. The derivative of price with respect to the yield to maturity is$$-\sum_{t=1}^{n} tv^{t+1} R_t = -v$$ times the numerator of the duration expression. Thus, the numerator of the duration expression is$$- (1.08)$$ times the derivative. But the derivative is given as -700. So the numerator of the duration expression is 756. Thus, the duration = 756/100 = 7.56.

36. Solution: C

$$\sum_{t=1}^{\infty} tv^t R_t$$

Duration is defined as$$\frac{\sum_{t=1}^{\infty} tv^t D}{\sum_{t=1}^{\infty} v^t D}$$, where for this problem v is calculated at i = 10% and R_t is a constant D, the dividend amount. Thus, the duration =$$\frac{\sum_{t=1}^{\infty} tv^t D}{\sum_{t=1}^{\infty} v^t D} = \frac{\sum_{t=1}^{\infty} tv^t}{\sum_{t=1}^{\infty} v^t}$$. Using the mathematics of infinite geometric progressions (or just remembering the present value for a 1 unit perpetuity immediate), the denominator =$$v (1/(1-v))$$ (first term times 1 divided by the quantity 1 minus the common ratio; converges as long as the absolute value of the common ratio, v in this case, is less than 1). This simplifies to$$1/i$$ because$$1 - v = d = i v$$.

The numerator may be remembered as the present value of an increasing perpetuity immediate beginning at 1 unit and increasing by 1 unit each payment period, which equals$$\frac{1}{i} + \frac{1}{i^2} = \frac{1+i}{i^2}$$. So duration =$$\frac{\sum_{t=1}^{\infty} tv^t}{\sum_{t=1}^{\infty} v^t} = (1+i)/i^2 / (1/i) = (1+i)/i = 1.1i = 11$.

37. Solution: B

\[\sum_{t=1}^{\infty} tv'R_t \]

Duration is defined as \[\sum_{t=1}^{\infty} \frac{tv'R_t}{v'D(1.02)^{t-1}} = \sum_{t=1}^{\infty} \frac{tv'}{(1.02)^{t-1}} \] amount, times \((1.02)^{t-1} \). Thus, the duration = \[\frac{\sum_{t=1}^{\infty} tv'R_t}{\sum_{t=1}^{\infty} v'D(1.02)^{t-1}} = \frac{\sum_{t=1}^{\infty} tv'}{(1.02)^{t-1}} \]

Using the mathematics of infinite geometric progressions (or just remembering the present value for a 1 unit geometrically increasing perpetuity immediate), the denominator = \(v - \frac{1}{(1 - v(1.02))^2} \), which simplifies to \(\frac{1}{i - .02} \). It can be shown* that the numerator simplifies to \(\frac{1 + i}{(i - .02)^2} \). So duration = numerator/denominator

\[= \frac{1 + i}{(i - .02)^2} \cdot \frac{1}{i - .02} = \frac{1 + i}{i - .02} \]

Thus, for \(i = .05 \), duration = \((1.05)/.03 = 35 \).

Alternative solution:

A shorter alternative solution uses the fact that the definition of duration can be shown to be equivalent to \(-(1+i) \frac{P'(i)}{P(i)} \) where \(P(i) = \sum_{t=1}^{\infty} v'R_t \). Thus, in this case \(P(i) = D \sum_{t=1}^{\infty} (1.02)^{t-1} = D \sum_{t=1}^{\infty} \frac{1}{i - .02} \) and

\[P'(i) = \frac{-D(1.02)^{t-1}}{(i - .02)^2} \]

Thus, the duration = \(-(1+i) \frac{1}{(i - .02)^2} \) \[= \frac{1 + i}{i - .02} \], yielding the same result as above.

*Note: The process for obtaining the value for the numerator using the mathematics of series simplification is:

Let \(S_{\text{Num}} \) denote the sum in the numerator.

Then \(S_{\text{Num}} = v + 2(1.02)v^2 + 3(1.02)^2v^3 + \ldots + n(1.02)^{n-1}v^n + \ldots \) and \((1.02)v \)

\[S_{\text{Num}} = \frac{1}{1(1.02)v^2} + 2(1.02)^2v^3 + \ldots + (n-1)(1.02)^{n-1}v^n + \ldots \]

Thus, \((1-(1.02)v) S_{\text{Num}} = v + 1(1.02)v^2 + 1(1.02)^2v^3 + \ldots + 1(1.02)^{n-1}v^n + \ldots = v - \frac{1}{(1 - v(1.02))} = \frac{1}{(i - .02)} \)

and \(S_{\text{Num}} = \frac{1}{(i - .02)} \) / \((1-(1.02)v) = \frac{1}{i - .02} \) / \(1+i \) = \(\frac{1+i}{i - .02} / \frac{1}{i - .02} = \frac{1+i}{i - .02} \).
38. Solution: B.

Eric’s equation of value at end of year:

\[(\text{Value of contributions}) \ 400 \ (1+i) + 800 - 2X + 16 = 800 \cdot (1.08) \ (\text{Value of returns})\]

(*Proceeds received for stock sale at beginning of year are in non-interest bearing account per government regulations (Kellison top of page 281))

Thus, Eric’s yield \(i = (16 + 2X)/400\).

Jason’s equation of value at end of year:

\[(\text{Value of contributions}) \ 400 \ (1+j) + 800 + X + 16 = 800 \cdot (1.08) \ (\text{Value of returns})\]

Thus, Jason’s yield \(j = (16 - X)/400\).

It is given that Eric’s yield \(i = \) twice Jason’s yield \(j\). So \((16 + 2X)/400 = 2 \ ((16 - X)/400)\), or \(X = 4\). Thus, Eric’s yield \(i = (16 + 8)/400 = .06\) or 6%.

39. Solution: B.

Chris’ equation of value at end of year:

\[(\text{Value of contributions}) \ .5 \ P(1+i) + 760 = P \cdot (1.06) \ (\text{Value of returns})\]

(*Proceeds received for stock sale at beginning of year are in non-interest bearing account per government regulations (Kellison top of page 281))

Thus, Chris’ yield \(i = ((1.03) P - 760)/(.5 P)\).

Jose’s equation of value at end of year:

\[(\text{Value of contributions}) \ .5 \ P(1+j) + 760 + 32 = P \cdot (1.06) \ (\text{Value of returns}),\]

Thus, Jose’s yield \(j = ((1.03) P - 792)/(.5 P)\).

It is given that Chris’ yield \(i = \) twice Jose’s yield \(j\). So \(((1.03) P - 760)/(.5 P) = 2 \ ((1.03) P - 792)/(.5 P)\)
or \(P = 824/(1.03) = 800\). Thus, Chris’ yield \(i = ((1.03) 800 - 760)/400 = 64/400 = .16\) or 16%.

40. Solution: E.

Bill’s equation of value at end of year:

\[(\text{Value of contributions}) \ 500 \ (1+i) + P + X = 1000 \cdot (1.06) \ (\text{Value of returns})\]

(*Proceeds received for stock sale at beginning of year are in non-interest bearing account per government regulations (Kellison top of page 281))

Thus, Bill’s yield \(i = (1030 - P - X)/500\).

Jane’s equation of value at end of year:

\[(\text{Value of contributions}) \ 500 \ (1+j) + P - 25 + 2X = 1000 \cdot (1.06) \ (\text{Value of returns}),\]

Thus, Jane’s yield \(j = (1055 - P - 2X)/500\).

It is given that Bill’s yield \(i = \) Jane’s yield \(j = .21\). So \((1030 - P - X)/500 = (1055 - P - 2X)/500\) or \(X = 25\) and \(.21 = (1030 - P - 25)/500\) (from Bill’s yield), which implies \(P = 1005 - .21 \ (500) = 1005 - 105 = 900\).
41. Solution: A.

Interest is effective at 1% monthly. \(PV_i = 100a_{\overline{6}|0} \) and \(PV_d = 6000v^K \). Because \(PV_i = PV_d \), \(6000v^K = 100a_{\overline{6}|0} = 4495.503841 \) or \(v^K = .74925 \). Then \(K = \frac{\ln(.74925)}{-\ln(1.01)} = 29. \)

42. Solution: B.

We are given \(1000 = 100a_{\overline{12}|1} + FP \cdot v^{12} \) at \(i = .035 \), where FP is the final payment.

Then \(FP = (1000 - 100a_{\overline{12}|1})(1.035)^{12} = 150.87. \)

Note: Using the BA 35 Solar calculator, you can compute the payment at time 12 in addition to a payment of 100 at time 12 as follow: select AC/ON, enter 12, select \(N \), enter 3.5, select \(\%i \), enter 100, select \(PMT \), enter 1000, select \(PV \), and then select \(CPT FV \) to obtain 50.87. Note that the total payment at time 12 is \(PMT + FV = 150.87 \), due to the calculator conventions regarding the annuity keys.

Using the BA II Plus calculator, you can compute the payment at time 12 in addition to a payment of 100 at time 12 as follow: select 2nd \(FV \), enter 12, select \(N \), enter 3.5, select \(I/Y \), enter 100, select \(PMT \), enter 1000, select \(+/- PV \), and then select \(CPT FV \) to obtain 50.87. Note that the total payment at time 12 is \(PMT + FV = 150.87 \), due to the calculator conventions regarding the annuity keys.

43. Solution: D.

The coupon amount is \((10,000)(.08/2) = 400. \) Because 2 months is 1/3 of the 6-month coupon period, the market price using compound interest, at 6% convertible semiannually, is

\[P_{1/3} = P_0(1.03)^{1/3} - 400\left(\frac{(1.03)^{1/3} - 1}{1.03 - 1}\right), \]

where \(P_0 \) is value of the bond just after the last coupon payment.

Given \(P_0 = 5640, P_{1/3} = 5640(1.03)^{1/3} - 400\left(\frac{(1.03)^{1/3} - 1}{1.03 - 1}\right) = 5563.82 \)

44. Solution: D.

We are given \(1081.78 = 25a_{\overline{20}|0} + 1000v^{20} \).

The solution can be obtained using the BA 35 Solar annuity keys as follows: select AC/ON, enter 20, select \(N \), enter 25, select \(PMT \), enter 1081.78, select \(PV \), enter 1000, select \(FV \), and then select \(CPT \%i \), and multiply by 2 to obtain the nominal semiannual yield rate of 3.9997336%.

Note: Using the BA II Plus calculator, the keystrokes are: 2nd \(FV \) enter 20, select \(N \), enter 25, select \(PMT \), enter 1081.78 +/-, select \(PV \), enter 1000 , select \(FV \), and then select \(CPT I/Y \), and multiply by 2 to obtain the nominal semiannual yield rate of 3.999733577%.

11/03/04
45. Solution: A

Key concepts for time-weighted rate of return:

Divide the time period into subintervals for each time there is a deposit or withdrawal

For each subinterval, calculate the ratio of the amount in the fund at the end of the subinterval (before the deposit or withdrawal at the end of the subinterval) to the amount in the fund at the beginning of the subinterval (after the deposit or withdrawal)

Multiply the ratios together to cover the desired time period

Thus, for this question, time-weighted return = 0% means: 1+0 = (12/10) (X/12+X) or 120 + 10 X = 12 X and X = 60

Key formulas for estimating dollar-weighted rate of return:

Fund January 1 + deposits during year – withdrawals during year + interest = Fund December 31.

Estimate of dollar–weighted rate of return = amount of interest divided by the weighted average amount of fund exposed to earning interest

Thus, for this question, amount of interest I = X – X – 10 = - 10 and dollar-weighted rate of return is given by Y = [-10/(10 + ½ (60))] = - 10/40 = - .25 = -25%

46. Solution: A

Given the term of the loan is 4 years, and the outstanding balance at end of third year = 559.12, the amount of principal repaid in the 4th payment is 559.12. But given level payments, the principal repaid forms a geometric progression and thus the principal repaid in the first year is v times the principal repaid in the fourth year = v^3 559.12. Interest on the loan is 8%, thus principal repaid in first year is (1/(1.08)^3)*559.12 = 443.85

47. Solution: B

Price of bond = 1000 because the bond is a par value bond and the coupon rate equals the yield rate.

At the end of 10 years, the equation of value on Bill’s investment is the price of the bond accumulated at 7% equals the accumulated value of the investment of the coupons plus the redemption value of 1000. However, the coupons are invested semiannually and interest i is an annual effective rate. So the equation of value is:

1000 (1.07)^10 = 30 \(\frac{s_{20|j}}{20|j} \) + 1000 where j is such that (1+j)^2=1+i

Rearranging, 30 \(\frac{s_{20|j}}{20|j} \) = 1000 (1.07)^10 – 1000 = 967.1513573. Solving for j (e.g. using one of the approved calculators) yields j = 4.759657516%, and thus i = (1+j)^2 – 1 = .097458584

48. Solution: A

3,000/9.65 = is the number of thousands required to provide the desired monthly retirement benefit because each 1000 provides 9.65 of monthly benefit and the desired monthly retirement benefit is 3000. Thus, 310,881 is the capital required at age 65 to provide the desired monthly retirement benefit.

Using the BA II Plus calculator, select 2nd BGN (monthly contributions start today), enter 12*25 = 300 (the total number of monthly contributions) select N, enter 8/12 (8% compounded monthly) select I/Y, enter 310,881 select +/- select FV, select CPT PMT to obtain 324.73.
EXAM 2/FM SAMPLE QUESTIONS SOLUTIONS

49. Solution: D
Using the daughter’s age 18 as the comparison date and equating the value at age 18 of the contributions to the value at age 18 of the four 50,000 payments results in:

\[X[(1.05)^{17} + (1.05)^{16} + ... (1.05)^1] = 50,000[1 + ... v_{0.05}^3] \]

50. Solution: D
The problem tests the ability to determine the purchase price of a bond between bond coupon dates. Find the price of the bond on the previous coupon date of April 15, 2005. On that date, there are 31 coupons (of $30 each) left. So the price on April 15, 2005 is:

\[P = 1000 \cdot v^{31} + 30 \cdot \frac{1}{a_{31}} \text{ all at } j = 0.035 \text{ or } P = 1000 + (30-35) \cdot \frac{1}{a_{31}} \text{ at } j = 0.035. \]

Thus, \(P = 906.32 \)
Then Price (June 28) = 906.32 \[1 + (74/183)(0.035) \] = $919.15

51. Solution: D
The following table summarizes what is required by the liabilities and what is provided by one unit of each of Bonds I and II.

<table>
<thead>
<tr>
<th></th>
<th>In 6 months</th>
<th>In one year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liabilities require:</td>
<td>$1,000</td>
<td>$1,000</td>
</tr>
<tr>
<td>One unit of Bond I provides:</td>
<td>$1,040</td>
<td></td>
</tr>
<tr>
<td>One unit of Bond II provides:</td>
<td>$25</td>
<td>$1,025</td>
</tr>
</tbody>
</table>

Thus, to match the liability cash flow required in one year, \((1/1.025) = .97561 \) units of Bond II are required. .97561 units of Bond II provide \((.97561 \cdot 25) = 24.39 \) in 6 months. Thus, \((1000-24.39)/1040 = .93809 \) units of Bond I are required.

Note: Checking answer choices is another approach but takes longer!

52. Solution: B
Total cost = cost of .93809 units of Bond I + cost of .97561 units of Bond II =

\[.93809 \cdot 1040 \cdot v_{0.03} + .97561 \cdot (25 \cdot v_{0.035} + 1025 \cdot v_{0.035}^2) = 1904.27 \]
53. Solution: D
Investment contribution = 1904; investment returns = 1000 in 6 months and 1000 in one year. Thus, the
effective yield rate per 6 months is that rate of interest j such that $1904 = 1000 \cdot v_j + 1000 \cdot v^2_j = 1000 \cdot a_{2j}$. Using

BA II Plus calculator keys: select 2nd FV; enter 1904, select +/-, select PV; enter 1000, select PMT; enter 2,
select N; select CPT, select I/Y yields 3.343 in % format. Thus, the annual effective rate = $(1.03343)^2 - 1 = .0678$.

Note: Even if 1904.27 is used as PV, the resulting annual effective interest rate is 6.8% when rounded to one
decimal point.

54. Solution: C
Given the coupon rate is greater than the yield rate, the bond sells at a premium. Thus, the minimum yield rate
for this callable bond is calculated based on a call at the earliest possible date because that is most
disadvantageous to the bond holder (earliest time at which a loss occurs). Thus, X, the par value, which equals
the redemption value because the bond is a par value bond, must satisfy:

Price = $30 \cdot 1100 \cdot 25.1722 + Xv^3_{0.03} + Xv^3_{0.03} = 1722.25/1.196 = 1440.01$

55. Solution: A
Given the price is greater than the par value, which equals the redemption value in this case, the minimum
yield rate for this callable bond is calculated based on a call at the earliest possible date because that is most
disadvantageous to the bond holder (earliest time at which a loss occurs). Thus, the effective yield rate per
coupon period, j, must satisfy:

Price = $30 \cdot 1100 \cdot 25.1722 + Xv^3_{0.03} + Xv^3_{0.03} = 1722.25/1.196 = 1440.01$

56. Solution: E
Given the coupon rate is less than the yield rate, the bond sells at a discount. Thus, the minimum yield rate for
this callable bond is calculated based on a call at the latest possible date because that is most
disadvantageous to the bond holder (latest time at which a gain occurs). Thus, X, the par value, which equals
the redemption value because the bond is a par value bond, must satisfy:

Price = $20 \cdot 1100 \cdot 25.1021 + Xv^3_{0.03} + Xv^3_{0.03} = 1021.50/1.8512 = 1200.07$

57. Solution: B
Given the price is less than the par value, which equals the redemption value in this case, the minimum yield
rate for this callable bond is calculated based on a call at the latest possible date because that is most
disadvantageous to the bond holder (latest time at which a gain occurs). Thus, the effective yield rate per
coupon period, j, must satisfy:

Price = $20 \cdot 1100 \cdot 25.1021 + Xv^3_{0.03} + Xv^3_{0.03} = 1021.50/1.8512 = 1200.07$

58. Solution: A
Given the price is less than the par value, which equals the redemption value in this case, the minimum yield
rate for this callable bond is calculated based on a call at the latest possible date because that is most
disadvantageous to the bond holder (latest time at which a gain occurs). Thus, the effective yield rate per
coupon period, j, must satisfy:

Price = $20 \cdot 1100 \cdot 25.1021 + Xv^3_{0.03} + Xv^3_{0.03} = 1021.50/1.8512 = 1200.07$